

International Journal of Nursing and Healthcare Research

Journal home page: www.ijnhr.com

<https://doi.org/10.36673/IJNHR.2025.v09.i02.A13>

JOUBERT SYNDROME

R. Jothilakshmi*¹

¹*Velammal College of Nursing, Madurai, Tamilnadu, India.

ABSTRACT

Joubert syndrome (JS) is an unusual neurodevelopmental disorder. Its trait of hypotonia, ataxia, and delayed developmental milestones. It affects multi system such as respiratory, neurological, renal, ocular, liver, limb. Many genes involved, problems occur in the site of cilium where it joins with the plasma membrane¹. It is also called ciliopathy. Patient had feeding problems, hearing and vision problems. Confirmed the diagnosis by molar tooth sign on magnetic resonance imaging and Genetic testing. The patient will be managed by supportive treatment² with the help of multi team members. Many patients need rehabilitation and genetic counselling.

KEYWORDS

Joubert Syndrome, Neurodevelopmental disorder, Genetic testing, Cilia and Molar tooth sign.

Author for Correspondence:

Jothilakshmi R,
Velammal College of Nursing,
Madurai, Tamilnadu, India.

Email: nallujothi@gmail.com

INTRODUCTION

Joubert syndrome (JS) is an uncommon genetic neurodevelopmental disorder. It characterized by abnormal development of the cerebellum and brainstem. Problems occur in coordination, breathing, eye movements and development. Many genes involved (e.g., AHI1, CEP290, TMEM67, CPLANE1). Mutations occur in these eight ciliary/basal body genes such as INPP5E, AHI1, NPHP1, CEP290, TMEM67/MKS3, RPGRIP1L, ARL13B and CC2D2A³.

Cause

Usually autosomal recessive inheritance
Caused by mutations in genes affecting primary cilia (classified as a ciliopathy)

Clinical Features

Neurological

Hypotonia (floppy infant)
Ataxia (poor balance, unsteady gait)
Developmental delay
Intellectual disability (variable)

Respiratory

Abnormal breathing pattern in infancy (episodes of apnea and hyperpnea)

Ocular

Abnormal eye movements

Oculomotor apraxia

Nystagmus

Visual impairment

Facial Features

Broad forehead

Arched eyebrows

Ptosis

Open mouth appearance

Retinal dystrophy⁴

Associated System Involvement (may be present)

Kidneys: nephronophthisis → renal failure

Liver: congenital hepatic fibrosis

Eyes: retinal dystrophy

Limbs: polydactyly, syndactyly⁵

Mouth: Cleft lip and palate⁵, soft-tissue masses on the dorsum of the tongue⁶

Diagnosis

Prenatal

DNA test, Fetal MRI⁷

Newborn

MRI brain – Molar tooth sign, Bat wing sign⁸, cerebellar vermis hypoplasia (CVH), deepened interpeduncular fossa and thick, elongated superior cerebellar peduncles⁷.

Genetic testing - Whole exome sequencing (WES) analysis, Optical genome mapping (OGM)⁹ and sanger sequencing¹⁰

Clinical assessment: The Gesell Developmental Scale is using to evaluate the intelligence level⁸

Video electroencephalogram (VEEG) -diffuse slow waves with overlapping sharp waves during wakefulness and sleep

Management

No cure

Supportive and multidisciplinary care

Physiotherapy and occupational therapy

Speech therapy

Regular monitoring of kidney, liver, and vision

Genetic counseling for parent

Management of breathing problems

Altered respiratory control requiring mechanical ventilation and/or tracheostomy

Management of feeding difficulties

For children with significant feeding difficulties related to hypotonia or dyscoordinated oromotor function, nasogastric feeding tubes or gastrostomy placement have been necessary to prevent aspiration and provide adequate caloric intake⁷.

Endocrine disorders may require hormone replacement.

Nursing theory application

Roy's Adaptation Model

Concept: Child and family continuously adapt to internal and external changes.

Outcome: Improved adaptation; stable physical health; emotionally supported parents.

Prognosis

Highly variable

Depends on severity and involvement of organs

Early intervention improves quality of life.

Nursing care plan:

Ineffective Breathing Pattern related to brainstem dysfunction

Goal: Maintain normal RR and SpO₂; baby free from apnea

Interventions:

Monitor RR, rhythm, SpO₂ continuously

Position head elevated

Provide oxygen if needed

Use apnea monitor

Gentle stimulation during apnea

Risk for Aspiration related to poor suck–swallow coordination

Goal: Baby feeds safely without choking/aspiration

Interventions

Assess swallowing ability
Upright feeding position
Slow, small frequent feeds
NG tube if unsafe feeding
Burp frequently
Imbalanced Nutrition: Less than body requirement related to feeding difficulty
Goal: Adequate nutrition and weight gain

Interventions

Daily weight monitoring
Dietitian referral
Thickened feeds/NG feeding
Monitor hydration and I/O
Encourage breastfeeding
Delayed Growth and Development related to neurological impairment
Goal: Promote optimal developmental progress

Interventions

Assess milestones regularly
Physiotherapy, occupational therapy
Positioning and passive exercises
Sensory and visual stimulation
Parent teaching
Risk for Infection related to hospitalization and weak immunity
Goal: Baby remains infection free

Interventions

Strict hand hygiene
Aseptic technique
Immunization updates
Monitor temperature
Parental Anxiety / Caregiver Role Strain related to chronic condition
Goal: Parents understand condition and cope well

Interventions

Explain disease clearly
Teach home care techniques
Emotional support and counselling
Support group referral

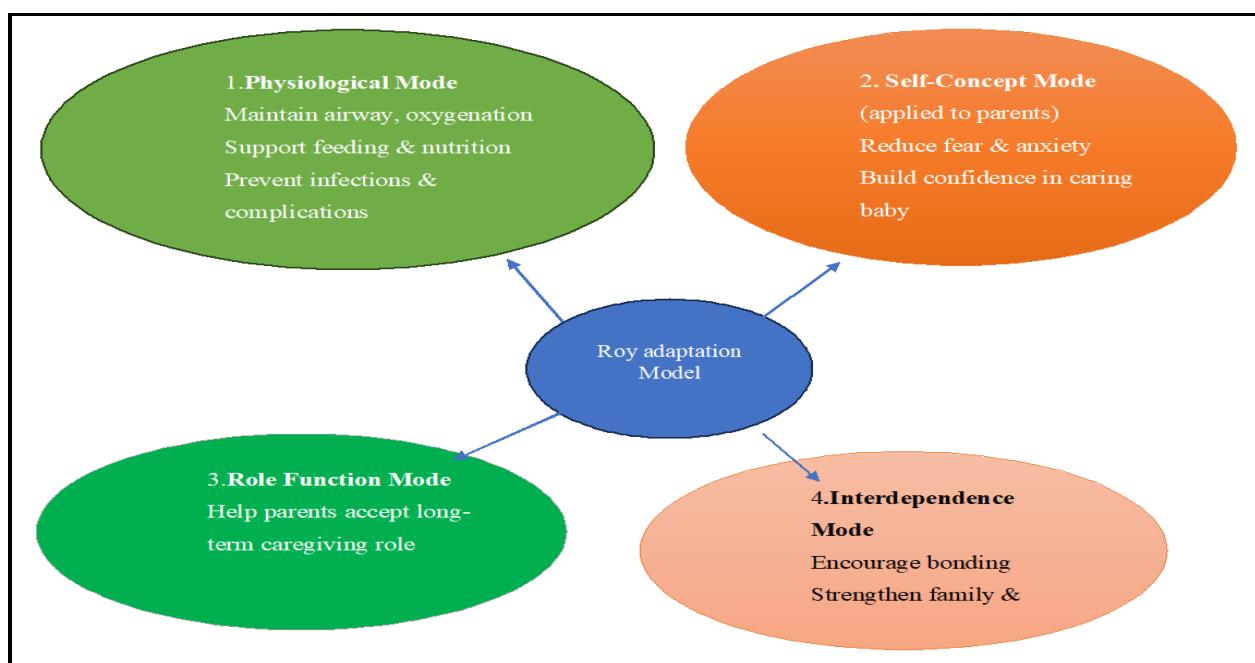


Figure No.1: Roy's Adaptation Model

CONCLUSION

Nursing care for children with Joubert syndrome plays a vital role in improving quality of life, preventing complications and supporting families through long-term care needs. Through early identification, continuous monitoring of respiratory status, developmental progress and associated organ involvement, nurses help ensure timely interventions and coordinated multidisciplinary management.

ACKNOWLEDGMENT

The authors wish to express their sincere gratitude to Velammal College of Nursing, Madurai, Tamilnadu, India for providing necessary facilities to carry out this research work.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

BIBLIOGRAPHY

1. Parisi M A. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity, *Translational Science of Rare Diseases*, 4(1-2), 2019, 25-49.
2. Mehta R S, Saxena A, Sonawane V B, Jatoo Z A, Archana V. Joubert syndrome: A rare disorder case report, *International Journal of Contemporary Pediatrics*, 12(6), 2025, 993-996.
3. Akella Radha Rama Devi, *et al.* Clinical and molecular diagnosis of Joubert syndrome, *Paediatric Neurology*, 106, 2020, 43-49.
4. Elhassanien A F, Alghaiaty H A. Joubert syndrome: Clinical and radiological characteristics of nine patients, *Annals Indian Academic Neurology*, 16(2), 2013, 239-244.
5. Goswami M, Rajwar A S, Verma M. Orocraniofacial findings of a pediatric patient with Joubert syndrome, *International Journal of Clinical Pediatric Dentistry*, 9(4), 2016, 379-383.
6. Bhardwaj P, Sharma M, Ahluwalia K. Joubert syndrome with orofacial digital features, *Journal of Neuroscience in Rural Practice*, 9(1), 2018, 152-154.
7. Parisi M A. Clinical and molecular features of Joubert syndrome and related disorders, *American Journal of Medical Genetics*, 151C(4), 2009, 326-340.
8. Dong Y, Zhang K, Yao H, Jia T, Wang J, Zhu D, Xu F, Cheng M, Zhao S and Shi X. Clinical and genetic characteristics of 36 children with Joubert syndrome, *Front. Pediatr*, 11, 2023, 1102639.
9. Kiraz A, Erdogan M, Balta B, *et al.* A case series of Joubert syndrome evaluated with whole exome sequencing and the utility of optical genome mapping in the diagnosis, *Neurogenetics*, 26(1), 2025, 47.
10. Wang H, Nie W, Wang C, Wang Z, Zheng Y. Novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant in a child patient with Joubert syndrome, *Open Life Science*, 18(1), 2023, 1-8.

Please cite this article in press as: Jothilakshmi R. Joubert syndrome, *International Journal of Nursing and Healthcare Research*, 9(2), 2025, 92-95.